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Abstract This paper outlines the use of Bayesian statistics to find the thermostability
and spin-coupling constant of protein. Thermostability is an important factor in pro-
tein efficacy; modeling it lets us find the mutation temperature of a protein. This is
important since the temperature affects protein function. The spin-coupling constant
provides high-level structure information about bond angles and rotation in a protein.
We have used Bayesian statistics (MCMC) to find the unknown parameters for these
two models. Predictive models using the parameters found with this method show
good results.
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1 Introduction

Bayesian statistics is a useful method for finding multiple unknown parameters in a
mathematical equation. The method lets us find unknown parameters given a math-
ematical model with some experimental or starting data [1,5]. Here we discuss the
application of Bayesian statistics to find the unknown parameters in the models of
protein thermostability and the spin-coupling constant of proteins.

Thermostability is an important factor in the efficacy of proteins. Knowing the muta-
tion temperature of a protein is useful since thermostability affects function. Mutants,
wild types, or homologous proteins may also have different mutation temperatures that
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cause them to function at different temperatures. A group at Fudan University stud-
ied the thermal stability of proteins using neutron-scattering-spectra-associated index
parameters β and heat capacity C p at constant pressure as the two criteria [4]. This
method, however, requires complex integration of the parameter. Bayesian statistics
method presented here provides an easier method to determine the thermostability.

The spin-coupling constant J provides information about bond angles and rotation,
which gives insight into the higher-level structure levels of the protein studied. The J
constant can be found experimentally using NMR, but the NMR data provides only
part of the information needed to construct a mathematical model.

Here we present two applications and a brief introduction to Bayesian statis-
tics. First, we give a brief survey of Bayesian statistical methods. Next, we out-
line the problem of determining the thermostable cutoff temperature for the wild-
type thermostable catechol 2,3-dioxygenase (TC23O) and homologous catechol
2,3-dioxygenase (1MPY) using the Poisson distribution. We refer to catechol 2,3-
dioxygenase by its pbd file name, 1MPY, rather than C23O to avoid confusion. In
our results, we have identified the mutation-point temperature of TC23O at 310 K and
the 1MPY mutation-point temperature at 240 K. This shows that the thermal stabil-
ity of TC23O is better than that of 1MPY. We also obtain exact values for the six
unknown parameters of the protein ubiquitin (Ub) for mathematical modeling of the
spin-coupling constant J using Gaussian distribution. The final three sections discuss
our results, discussion, and conclusions.

2 Methods

Bayesian statistics consists of the Bayesian formula and the Markov Chain Monte
Carlo (MCMC) method to find unknown parameters in a problem using experimental
or known data, and a mathematical model of the problem.

The Bayesian statistical view takes a known set of experimental data and the
unknown parameters as random numbers, but each follows its own distribution. Sup-
pose D is a vector expressing all experimental data D1, D2, . . . , Dn, and the vector
θ that expresses all unknown parameters. The relation of their probabilities is the
Bayesian formula:

P(θ |D) = P(θ)P(D|θ)
∫

P(θ)P(D|θ)dθ (1)

The denominator of Eq. 1, however, is a constant when θ is independent. So, the
formula can also be written as:

P(θ |D) ∝ P(θ)P(D|θ) (2)

We call P(θ |D) the posterior probability, P(θ) the prior probability, and P(D|θ) the
likelihood. Thus the mathematical expectation of a function F(θ) can be defined as:

E(θ |D) =
∫

F(θ)P(θ |D)dθ (3)
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In addition to the Bayesian statistics outlined above, the Markov Chain and Monte
Carlo methods are necessary to obtain the unknown variables. This subsection gives
a brief explanation of the Monte Carlo Method, the Markov Chain, and the combined
Markov Chain Monte Carlo (MCMC) method.

The principle of the Monte Carlo method is relatively simple. According to the law
of large numbers, the sample mean is close to the overall average when n is large. Thus
we can use many random numbers with a known distribution to calculate numerical
values for mathematical functions. For example, we can calculate the definite integral∫ b

a f (x)dx using n uniformly distributed random numbers on the interval [a, b] as
∫ b

a f (x)dx → b−a
n

∑n
i=1 f (xi ) as n → ∞. This method can be applied to many

different kinds of problems, including Bayesian statistics.
A Markov Chain is a random process. It can also be thought of as a set of random

variables. The next value or state at any point in the chain depends only on the current
value or state; it is not affected by previous values. A very simple way of thinking
about this is to consider a random process of putting beads on a string. You have many
different containers with many colors of beads in them. Any bead you take out of a
container is replaced with a new bead. If the last bead on the string is blue, you take
the next bead out of a certain container. If that bead is green, your next bead may be
from the same or a different container. The fact that the previous bead was blue has
no effect on the bead you choose after the current one.

A mathematical way of stating this is that, given a chain of statuses X0, X1, . . . ,

X(t+1), the probability of the next state is P(X(t+1)|Xt ). This probability depends
only on the state Xt and not on the value of t. More generally, n-step Markov Chains
may be defined as P(X(t+n)|Xt ) for some n ∈ Z

+.
The Markov Chain depends on the initial state, denoted by π , and the transition

matrix Pi j is defined as:

Pi j = P(X(t+n) = a j |Xt = ai ), where n = [1, 2, 3, . . .] (4)

The state is generally represented by multiple variables, so the state values ai , a j can
be vectors. The transition matrix Pi j has some important properties:

1. Pi j ≥ 0
2. The sum of the elements of each row is 1. That is,

∑n
j=1 Pi j = 1.

3. Pi j is defined only for states separated by n discrete steps.

The Markov Chain steady state is independent of time and initial state π . A chain
usually has several equilibrium distributions, but the initial state is not sensitive to
the given conditions. Thus, the Markov Chain eventually forgets its initial state and
converges to a unique stationary distribution of the steady state. Therefore, it will drop
the m unstable states as expressed by the equation:

E( f (x)) = 1

n − m

n∑

i=m+1

f (xi ) (5)

Typical m values are 5–10 % of the total number of states.
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The MCMC method simply uses the random numbers produced by a Markov Chain
for the Monte Carlo method, as expressed by the equation:

E(θ |D) =
∫

F(θ)p(θ |D)dθ → 1

n − m

n∑

i=m+1

F(θi ) (6)

Two main sampling methods are used to generate the Markov Chain: Metropolis–
Hastings sampling and Gibbs sampling. We used the Gibbs sampling method in our
application.

2.1 Finding the thermostability criterion

We applied the concept of Bayesian statistics to the problem of determining the ther-
mostability criterion of TC23O and its homologue 1MPY. The neutron-scattering-
spectra-associated index β and the heat capacity C p at constant pressure are two
experimentally determinable criterias of thermostability. From the experimental data
and molecular dynamics simulations, we can also obtain the mean-square displace-
ment (MSD) data for the hydrogen atoms of TC23O and 1MPY. Figure 1 shows the
MSD curve for TC23O and 1MPY. The MSD is calculated using the total number of
hydrogen atoms N as:

M SD = 1

N

∑

i

[ri (t)− ri (0)]2 (7)

Fig. 1 The mean-square displacement (MSD) curve with temperature of all hydrogen atoms in TC23O
and 1MPY. The kinetic transition temperature Td appears at 310 and 245 K; (line with open square) TC23O
hydrogen atom; (line with filled diamond) 1MPY hydrogen atom
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Table 1 Temperature, MSD of
TC23O hydrogen atoms, and
MSD of 1MPY hydrogen atoms

T MSD
T230

MSD
1MPY

T MSD
T230

MSD
1MPY

30 0.000 0.000 220 0.110 0.140

40 0.010 0.010 230 0.120 0.150

50 0.020 0.020 240 0.125 0.160

60 0.030 0.030 250 0.130 0.175

70 0.040 0.040 260 0.135 0.190

80 0.040 0.040 270 0.140 0.200

90 0.050 0.050 280 0.145 0.200

100 0.050 0.050 290 0.150 0.210

110 0.060 0.060 300 0.180 0.210

120 0.065 0.065 310 0.185 0.260

130 0.065 0.065 320 0.190 0.290

140 0.065 0.065 330 0.220 0.320

150 0.070 0.070 340 0.250 0.330

160 0.080 0.090 350 0.260 0.370

170 0.090 0.100 360 0.270 0.375

180 0.090 0.120 370 0.310 0.370

190 0.090 0.120 380 0.340 0.410

200 0.100 0.130 390 0.390 0.420

210 0.105 0.130 NA NA NA

We also used the MSD and temperature data to set up a Bayesian statistical analysis
to determine thermostability (Table 1).

The Poisson distribution is often used for a number of incidence statistics. As
we see from Fig. 1, the mean-square displacement increases significantly at a certain
temperature. Our aim is to use the MCMC method to estimate and predict this mutation
point. The key point is to assume that the system obeys one Poisson distribution before
the mutant temperature and another Poisson distribution after the mutant temperature.
The Poisson distribution is expressed as:

P(x) = e−λ λ
x
, where λ > 0, x = 0, 1, 2, . . . (8)

Thus, the Poisson distribution should have a different λ parameter after the mutation
temperature. The model can be defined in two parts as:

λ(i) = e(b1+step(i−k)∗b2) (9)

step(x) =
{

1 if x ≥ 0

0 if x < 0
(10)

Bayesian Inference Using Gibbs (OpenBUGS) is an MCMC software that runs
on Windows, Linux and MacOS. The OpenBUGS software uses the Gibbs sampling
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algorithm with Bayesian statistics [3]. It is coded in R scripting language, from the
project founded by Ross Ihaka and Robert Gentleman [2]. The code has three parts:
the model section, the data section, and the initialization section. We first provide the
likelihood and then the prior values for our model with its distribution in the model
section. The experimental data appears as a list in the data part. In the initialization
section, we provide initial values for the unknown parameters.

The program OpenBUGS runs MCMC to fit parameters b1, b2, and k in the model.
This particular application is fairly simple. We used a Poisson distribution, the model
defined in Eq. 9 and Eq. 10, and the molecular dynamics data, and we initialized the
model at b1 = 0, b2 = 0, and k = 20. Since the Poisson distribution argument must
be a positive integer, we expand 100 times for MSD. This does not affect its nature.
For the 1MPY example, the OpenBUGS procedure is as follows in Program 1.

Program 1 Bugs Code for finding lamda
    model {

        for (i in 1:n){
            y[i] ˜dpois(mu[i])
            log(mu[i]) < -b[1] + step(i-k)*b[2]
        }

        for(j in 1:2){
            b[j] ˜ dnorm(0.0, 1.0E-6)
        }

        k˜dunif(1,n)
    }

list(n=37, y =c(0, 1, 2, 3, 4, 4, 5, 5, 6, 6.5,
6.5, 6.5, 7, 9, 10, 12, 12, 13, 13, 14, 15,
16, 17.5, 19, 20, 20, 21, 21, 26, 29, 32, 33,
37, 37.5, 37, 41, 42) )

list(b=c(0,0),k=20)

2.2 Spin-coupling constant of a protein residue

A similar approach to that outlined in the previous section can be used to determine
the equation for the spin-coupling constant J. The spin-coupling constant J can be
determined from NMR experiments. X-ray diffraction can provide the rotation angle
ψ around a single Cα–C bond and the rotation angle φ around a single Cα–N bond.
The mathematical model defining the relationship between J, ψ , and φ can be written
as:

Ji = A + B sin(ψi + ψ0)− C cos(2(ψi + ψ0))+ D cos(2(φi + φ0)) (11)

where Ji , ψi , and φi are the i th experimental values. The remaining constants A, B,
C, and D and the initial angles ψ0 and φ0 that must be found using Bayesian statistics.

Again, we used OpenBUGS to run MCMC. The MCMC process to fit the six para-
meters in the J equation (11) is a little more complex than that for the thermostability

123



J Math Chem (2015) 53:151–161 157

application. We used uniform distribution for the unknown parameters and a normal
distribution for J. We also need two more variables, τ and σ , that are used to define the
distribution for J. It must also be noted that we must run MCMC for at least a million
iterations to produce accurate results. The code to run the MCMC in order to find all
the unknown parameters is shown below in Program 2.

Program 2 Bugs program for finding Spin-Coupling equation constants.
model
    {
        for( i in 1 : N ) {
            Y[i] ˜ dnorm(mu[i], tau)

            mu[i] <- A+B*sin(3.14159/180*(psi[i]+psi0))
            -C*cos(2*3.14159/180*(psi[i]+psi0))
            +D*cos(2*3.14159/180*(phi[i]+phi0))
        }
        tau ˜ dgamma(0.001, 0.001)
        psi0 ˜dunif(100, 200)
        phi0 ˜dunif(10,50)
        A  ˜dunif(100, 200)
        B ˜dunif(0, 5)
        C ˜dunif(0,5)
        D ˜dunif(0,5)
}

list(Y=c(143.8650, 138.2660, 142.8440, 138.7770, 143.5620, 138.5590,
141.5180, 141.6620, 143.3900, 142.0190, 141.0070, 142.9980, 139.6710,
142.9670, 141.8230, 141.2770, 142.8900, 141.6830, 141.7750, 147.1500,
145.3120, 147.3090, 145.8280, 147.0240, 142.7480, 141.7890, 145.0790,
139.5500, 142.7460, 146.1250, 141.3430, 139.6180, 139.3690, 140.6760,
140.4850, 141.7890, 135.8790, 141.0070, 140.6840, 139.4270, 138.2540,
144.1360, 146.6530, 139.8290, 135.2640, 139.0350, 137.9060, 144.3100,
131.6650, 144.1040, 142.3370, 140.7250, 141.1930, 141.5730, 139.0840,
142.3110, 142.9790, 141.2520, 141.8340 ),

phi = c(-93.0660, -129.9030, -111.9240, -115.5030, -89.5330, -95.0710,
-72.9520, -95.3990, -102.5400, -112.7690, -107.8610, -96.4490, -128.5930,
-108.1840, -136.9390, -116.5520, -74.2110, -82.1290, -63.9300, -56.9940,
-62.4970, -61.9890, -68.6350, -63.8930, -63.9800, -58.8500, -94.1960,
-119.0680, -79.3690, -64.4160, -92.3300, -84.8100, -128.3790, -96.1020,
-122.5630, -143.5870, 50.8410, -112.7020, -75.3370,-82.5850, -103.3780,
-62.2770, -66.1410, -96.7640, 63.4000, -77.2660, -99.2820, -53.6520,
72.7130, -74.1720, -116.8690, -97.8620, -104.8100, -105.2350, -113.0780,
-92.2360, -122.6380, -81.2270, -99.0580),

psi=c(132.5650, 159.7930, 134.7380, 106.6430, 121.4910, 170.6230,
-11.4640, 4.0580, 131.5780, 128.1320, 136.5680, 138.2780, 149.1180,
114.3720, 167.8460, 142.2070, 143.6580, 161.5920, -37.8350, -40.2400,
-43.2520, -34.1490, -37.5370, -42.3070, -40.0600, -38.7980, -28.1910,
-11.0430, 119.2440, -18.4380, -10.5110, 130.1390,  107.6240, 131.0830,
130.9270, 128.4580,  44.0300, 140.0160, 133.8270, 164.1810, 166.0220,
-32.9340, -31.4130,  -0.2260, 35.7980, 112.5620, 169.7320, 139.5180,
17.9760, 157.1250, 122.3190, 150.7280, 129.1740, 116.8930, 133.5510,
138.0120, 96.9040, 147.2140,  93.8800),

 N=59
)
list( tau=0.05, A=150.0, B=3.0, C=5.0, D=5.0, phi0=50.0, psi0=150)
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3 Results and discussion

3.1 Thermostability

The results of the MCMC are shown in Table 2. The data shows very small error and
standard deviation for the parameters. Figure 2 shows the density functions of the
parameters.

Figure 3 shows the change in λ with respect to temperature of the proteins, this
change can be called the knee point. The change in the Poisson distribution, which
indicates the mutation temperature, can easily be seen at 240 K for 1MPY and 310 K
for TC23O.

The change of the parameters is consistent with Fig. 1, showing that the thermal
stability of TC23O is better than that of 1MPY. The Poisson distributions have two
different parameters before and after the mutation points: TC23O has λ values of
7.524 and 24.260 while 1MPY has λ values of 7.152 and 27.750. There is a transition
period between the two Poisson distribution parameters of a protein. It is usually

Table 2 MCMC node statistics of thermostability equation parameters

Parameter Mean SD MC error Median Starting sample Total samples

b[1] 1.962 0.1136 9.850E−4 1.969 10,001 90,000

b[2] 1.360 0.1035 6.660E−4 1.357 10,001 90,000

k 21.130 1.4220 1.211E−2 21.190 10,001 90,000

Table shows MCMC estimation results for thermostability equation parameters. The mean values can be
used as estimates for each parameter in the equation. The first ten thousand samples are discarded so that
only the values of the stable system are included in the mean values

Fig. 2 Density functions for b1, b2, and k for 90,000 samples
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Fig. 3 Knee point change in λ versus temperature (K) for TC23O and 1MPY

Table 3 MCMC node statistics of the spin-coupling equation parameters. The first one hundred thousand
samples are discarded so only the values of the stable system are included in the mean values

Parameter Mean SD MC error Median Starting sample Total samples

A 140.500 0.7491 1.858E−3 140.400 100,001 900,000

B 1.218 0.4312 9.780E−4 1.215 100,001 900,000

C 3.604 0.6043 1.464E−3 3.617 100,001 900,000

D 1.407 0.6808 1.676E−3 1.354 100,001 900,000

phi0 30.770 10.0800 2.473E−2 30.450 100,001 900,000

psi0 142.500 5.1230 1.261E−2 142.100 100,001 900,000

believed that the protein remains in a harmonic potential well and the system has only
a single conformational dynamic when the temperature is below the mutation point.
Then, as the temperature increases, the heat allows smaller molecules to vibrate. From
the mutation temperature (i.e. the kinetic phase transition temperature), it can be
seen that the transition period can be reached by 1MPY at 218 K and by TC23O at
290 K, if required to achieve the same λ value as in Fig. 3 (λ = 15.16). Thus, for the
same number of conformational dynamics, TC23O needs more heat. This indirectly
reveals that TC23O has higher thermal stability than its homologous 1MPY. This
Bayesian statistical method for determining of protein thermal stability is simpler than
the neutron-scattering-spectra-associated index β parameters, because the parameter
β must be taken through a complex integration.

3.2 The spin-coupling constant

The results of the MCMC for the J constant equation are shown in Table 3.
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Fig. 4 Density distributions of the parameters A, B, C, D, ψ0, and φ0 from the J constant equation

Fig. 5 Measured spin-coupling constant J (blue open square) and estimated J (black filled diamond)
values generated using MATLAB
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We can use these to give our full mathematical model:

Ji = 140.5 + 1.218 sin(ψi + 142.5)− 3.604 cos(2(ψi + 142.5))

+1.407 cos(2(φi + 30.77)) (12)

Figure 4 shows the density distribution of the parameters. Most parameter distri-
butions showed the expected normal distributions. Only the distribution of φ0 is not
a normal distribution, it is more flattened than a normal distribution. This accounts
for some of the offset predicted in the measured results. Comparison of the estimated
spin-coupling J values from our model with the measured J values in Fig. 5 shows
our results are reasonably good predictions.

4 Conclusion

Problems often arise for which a set of experimental data and a mathematical model
are available, but the mathematical model has several unknown variables. Bayesian
statistics is a good method for finding unknown parameters in biological models,
as shown by the protein applications discussed here. The mathematical models used
to predict thermostability and the spin-coupling constant can be easily applied to
other proteins. This would be particularly helpful for drug targeting, since a deep
understanding of target proteins is required.
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